The world of touchless disinfection is growing quickly and there is a lot of varying information available. Taking on a new technology can be daunting. Maybe you have done your homework and you are interested in adding electrostatic sprayers at your facility. Or maybe you have already added them in and still have questions. Below I have laid out some best practice recommendations. Ultimately, there is no one-size-fits-all for acute healthcare settings, but hopefully some of these give you and your team a place to start.

  1. Educate Internally
    Electrostatics, foggers, misters, oh my! You might have these technologies straight in your mind (if not, check out Breaking Down Electrostatic Technology: Everything You Need to Know), but there is a good chance your colleagues are not completely clear on the key differentiators. As with all areas of Infection Prevention and Public Health, education up front can do a lot to mitigate concerns and misinformation. It can also help to identify those on the Environmental Services (EVS) team that will be your key operators and trainers. I recommend leveraging trainings offered by your electrostatic sprayer and/or disinfectant manufacturer. Many offer online training videos and resources to assist you in setting up a plan for initial and ongoing training.
  2. Confirm your Disinfectant is EPA Approved for Electrostatic Use
    This one seems obvious, but I think it is an important reminder. Your electrostatic sprayer manufacturer should provide a list of safe chemicals that have been tested and approved by the United States Environmental Protection Agency (EPA) for use through an electrostatic sprayer. This ensures safety not only for the operators but also for patients and other staff members in the area. Not all devices are created equally. Similarly, not all disinfectants are safe or effective when used through an electrostatic sprayer. If you are not sure if a disinfectant has been approved for electrostatic use, you can look up the Master Label on the EPA website by using the EPA Registration Number.
  3. Target Your Electrostatic Disinfectant Based on Area
    Once you have identified the list of safe EPA-approved chemicals, consider selecting more than one electrostatic disinfectant for your facility. Your decision to use one disinfectant versus another may vary depending on the type of area, surface compatibility, frequency of use, and the number of devices you are planning on employing. The same strategies you use in your protocols now with wipes and trigger sprays should also be considered when you are adding electrostatic sprayers to your arsenal. For example, you may choose to use a sporicidal product in your patient areas where the risk of C. difficile is a concern and then use a more general hospital disinfectant in your lobby and waiting rooms. Your individual risk assessments can also help to drive these decisions.
  4. Develop a Step-by-Step Protocol
    Having a clear and easy-to-understand protocol will help to prevent any potential issues. Here are some suggestions for setting electrostatic sprayer operators up for success in your protocol development:
    • Always recommend gathering supplies in advance, performing hand hygiene, and putting on appropriate personal protective equipment (PPE) prior to spraying.
    • Have operators remove all linens, paper products and trash from the spray area. I recommend placing a sign outside to indicate that cleaning is in progress. Of note, most products do not recommend use of an electrostatic sprayer while bystanders are in the area. Re-entry time will depend on the disinfectant in use and can be affected by other factors such as air exchange rates, temperature, and humidity.
    • Be sure to include a step for cleaning visible soil. Electrostatic sprayers can be an adjunct to routine manual cleaning and disinfection or a stand-alone step if there is no visible soil on the surface.
  5. Don’t Forget About Spraying Strategy
    • Make sure to clearly spray target surfaces and avoid just spraying into the air.
    • Stick to one spraying path: clockwise or counterclockwise.
    • Use a zone approach to spray, starting with the far side of the area and working towards the door.
    • Spray using a slow, side-to-side motion, working from high to low surfaces.
    • Stand the appropriate distance from surfaces when spraying. The required distance may vary by electrostatic sprayer. Your goal is to have surfaces wet but not saturated. HINT: If you see dripping or pooling of liquid, you have sprayed too much!
    • Try to maintain a consistent spraying approach with the exception of sensitive electronics and glass or mirrored surfaces. These surfaces may require a wiping step after the contact time has been reached to remove residue and to keep surfaces looking polished.

What do smallpox, polio, and measles1 all have in common? They have all been successfully eliminated in the U.S. via wide-spread vaccination. After ten long months, the COVID-19 vaccine roll-out is finally happening and we are well on our way to successfully combating another infectious disease.

What will determine if the new vaccines are successful?

Simply put, people need to get vaccinated for a vaccine to be effective. Yes, the vaccine itself must be safe and have high efficacy (i.e., create an adequate immune response in those vaccinated), but ultimately what determines if a vaccine is truly successful at eliminating a disease in a population comes down to herd immunity.

What is herd immunity?

Herd immunity is the act of protection that is provided when enough of a population gains immunity to an illness that it halts transmission. Every infectious disease has a reproduction number or R0 (pronounced “R naught”). This calculation is the average number of people an infected individual will infect in an at-risk (non-immune) population. Inevitably, for any given disease, the R0 calculations can vary widely, but are generally based on three primary characteristics:

  1. How long an individual is contagious while infected
  2. The likelihood of infection per contact between an infectious person and a susceptible person
  3. How often people are encountering one another (contact rate)

With COVID-19, R0 estimates change based on location and population, but some studies calculate it being as high as 5.7 (95% CI 3.8–8.9) .2 So, if I am infected with COVID-19 and interacting with a completely vulnerable group of individuals, on average, I could expect to infect five other people. To reach herd immunity, you essentially need to pass an immunity threshold that makes it so that an infected person has no one to transmit the infectious disease to because no one around them is susceptible (R0 < 1).3

Herd Immunity Blog Post

Why do we need to get vaccinated?

Herd immunity has been a hot topic throughout the pandemic as there are only two ways to truly achieve it: 1) natural immunity via infection and 2) immunity via vaccination. Unfortunately, when it comes to most infectious diseases, natural immunity through active infection might not be enough to offer full protection and any immunity provided could dissipate over time leaving some individuals vulnerable to reinfection. Additionally, waiting for a population to become infected, and therefore immune, can take a very long time and may result in unnecessary deaths and long-term health implications.

One great example of this is chickenpox. Not long ago, parents would purposely expose their children to infectious individuals to ensure immunity was developed at a young age. I can remember vividly being forced on a play date while covered in spots. Unfortunately, to achieve this natural herd immunity, each year, over 10,000 were hospitalized and an estimated 100-150 died. After the vaccine became widely available in the U.S. in 1995, more than 3.5 million cases of chickenpox are now prevented each year.4

How many people need to get vaccinated to achieve herd immunity?

The estimated number of people that need to get vaccinated to achieve herd immunity depends on several factors:

  1. The infectious disease and how contagious it is.
  2. The proportion of people that are susceptible in a population.
  3. The overall effectiveness of the vaccine.

Experts do not yet know what that threshold is for COVID-19. This is because we do not know how many of us already have immunity. Dr. Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases, estimates that around 75% of the public needs to get vaccinated for herd immunity to provide protection and truly stop the spread of COVID-19.5

How do we learn more about the COVID-19 vaccines and the plan to reach herd immunity?

Concerns over the speed with which these vaccines were developed are warranted. We should all do our due diligence with any new public health intervention. Thankfully, the information on safety is widely available. Here are three comprehensive resources to help address any concerns you, your family, or your staff may have:

What can we do now?

The Centers for Disease Control and Prevention (CDC), in consultation with the U.S. Advisory Committee on Immunization Practices (ACIP), is prioritizing vaccine distribution in a fair and ethical way and continuing to provide transparent updates on the vaccine roll-out plan. While we wait for our turn to be vaccinated, we need to remind our family, friends, and staff to continue to do all the things that we have been doing – wear masks, maintain social distance, avoid indoor and poorly ventilated spaces, wash our hands, and clean and disinfect regularly. We do these things to protect ourselves, but more importantly, to protect others. That is also true of vaccines. We get them to create herd immunity and protect those in our society that are most vulnerable. I, for one, am looking forward to adding another eliminated disease to the above vaccine success list – smallpox, polio, measles, and COVID-19!

References

  1. Measles Elimination [Internet]. Centers for Disease Control and Prevention (CDC). 2020. [cited 2020 Dec 8] Available from: https://www.cdc.gov/measles/elimination.html
  2. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis [Internet]. 2020. [cited 2020 Dec 8] Available from: https://wwwnc.cdc.gov/eid/article/26/7/20-0282_article
  3. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic reproduction number (R0). Emerg Infect Dis [Internet]. 2019. [cited 2020 Dec 8] Available from: https://wwwnc.cdc.gov/eid/article/25/1/17-1901_article
  4. Chickenpox (Varicella) [Internet]. Centers for Disease Control and Prevention (CDC). 2020. [cited 2020 Dec 8] Available from: https://www.cdc.gov/chickenpox/about/index.html
  5. Armour, S. Fauci Calls Coronavirus Vaccine a Game Changer, Decries Misinformation [Internet]. The Wall Street Journal. 2020 Dec 8. [cited 2020 Dec 8] Available from: https://www.wsj.com/articles/deborah-birx-and-anthony-fauci-to-discuss-coronavirus-response-11607432098

Within the past three months, there have been more and more articles written about “Sanitization or Hygiene Theater.”1 The concept is based off “Security Theater,” a term which was used post-9/11 to describe the increased TSA measures that, arguably, did little to prevent future attacks.2 The comparison is founded on the notion that all the pandemic-induced cleaning, sanitizing, and disinfecting may be completely unwarranted and even wasteful in terms of time and money. In August 2020, Dr. Emanuel Goldman, a Professor of Microbiology at Rutgers University published a commentary based on comprehensive scientific literature review in The Lancet stating that “the chance of [SARS-CoV-2] transmission through inanimate surfaces is very small, and only in instances where an infected person coughs or sneezes on the surface, and someone else touches that surface soon after the cough or sneeze (within 1–2 h) [is there a risk].” Dr. Goldman goes on to say that “although periodically disinfecting surfaces and use of gloves are reasonable precautions especially in hospitals, I believe that fomites that have not been in contact with an infected carrier for many hours do not pose a measurable risk of transmission in non-hospital settings.”3

As a Public Health Professional, I cannot help but pause to contemplate this perspective. On one hand, the CDC confirms that “COVID-19 is thought to spread mainly through close contact from person-to-person, including between people who are physically near each other (within about 6 feet).” Though guidance still encourages “routinely clean[ing] and disinfect[ing] frequently touched surfaces.”4 On the other hand, I have been advocating for better disinfection practices in both healthcare and private settings for my entire career. I see this new world mindset as an incredible public health achievement. Infection Prevention is no longer a term isolated to the four walls of the hospital — we, now more than ever, are all more aware of the need for disinfection within our businesses as employees (or owners), as consumers, and even in our own homes. If you were to travel back to pre-pandemic times (possible via a quick Google search), illnesses such as the flu, common colds, and stomach bugs (gastroenteritis) were already a substantial burden in terms of absenteeism, diminished productivity, and increased healthcare costs.5 Influenza infections in adults alone resulted in an estimated $87 billion per year in terms of healthcare costs, projected lost earnings, and loss of life.6

Even knowing all of this, prior to the pandemic, employees and customers accepted a certain level of risk when it came to the safety of our shared public spaces. Post-pandemic, that accepted trust in the world around us is gone. Deloitte recently published a Safety and Cleanliness Survey7 which demonstrated that in addition to wearing masks and providing hand sanitizer, the top interventions businesses can take to rebuild trust are:

For Customers:

For Employees:

Source: Deloitte Safety & Cleanliness Survey, Deloitte Consulting LLP, 2020

Not only are these practices what we should have been doing all along, it is evident that the public is now looking for consistent displays of safety and cleanliness to trust businesses moving forward. However, as highlighted in the recent CloroxPro blog, Smart Disinfection: Making the Most of Your Disinfectants, it is important to develop a plan for using disinfectants efficiently and effectively. There is undoubtedly a balance that businesses need to find, and “hygiene theater” cannot be the only public health protocol put into practice. Any cleaning and disinfection efforts need to be used in combination with other CDC recommended initiatives, including social distancing, mask wearing, handwashing, staying home when sick, and improving indoor ventilation.4 The idea of Dr. James Reason’s 1990 “Swiss Cheese Model” still holds true today. The safeguards recommended represent the multiple layers needed to protect consumers and employees, alike. As pointed out by the Cleveland Clinic, “when used together consistently, the holes (or weaknesses) in any single layer of protection should be offset by the strengths of another layer of intervention.”8 We have to address every area of potential spread to truly create a safe and healthy environment for all.

References

  1. 1. Thompson D. Hygiene Theater Is a Huge Waste of Time: People are power scrubbing their way to a false sense of security. [Internet]. The Atlantic. 2020 [cited 2020 Oct 6]. p. 1–8. Available from: https://www.theatlantic.com/ideas/archive/2020/07/scourge-hygiene-theater/614599/
  2. 2. Judkis M. Deep cleans and disinfecting mists might not keep us from getting the virus , but they sure make us feel better [Internet]. The Washington Post. 2020 [cited 2020 Oct 6]. Available from: https://www.washingtonpost.com/lifestyle/style/deep-cleans-and-disinfecting-mists-might-not-keep-us-from-getting-the-virus-but-they-sure-make-us-feel-better/2020/09/05/f428b8ee-e965-11ea-97e0-94d2e46e759b_story.html
  3. 3. Goldman E. Exaggerated risk of transmission of COVID-19 by fomites [Internet]. Vol. 20, The Lancet Infectious Diseases. 2020. p. 892–3. Available from: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30561-2/fulltext
  4. How COVID-19 Spreads [Internet]. Centers for Disease Control and Prevention (CDC). 2020 [cited 2020 Oct 6]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
  5. 4. Bramley TJ, Lerner D, Sames M. Productivity losses related to the common cold. J Occup Environ Med. 2002.
  6. 5. Keech M, Beardsworth P. The impact of influenza on working days lost: A review of the literature. PharmacoEconomics. 2008.
  7. 6. Safety and cleanliness – make it or break it. [Internet]. Deloitte Consulting, LLP. 2020 [cited 2020 Oct 6]. p. 1–5. Available from: https://www.deloittedigital.com/content/dam/deloittedigital/us/documents/offerings/offering-20200626-safety-cleanliness-covid.pdf
  8. 7. Return to Work Amid COVID-19 [Internet]. Cleveland Clinic. 2020 [cited 2020 Oct 9]. p. 5. Available from: https://my.clevelandclinic.org/-/scassets/files/org/employer-solutions/covid-19-returning-to-work-guide.ashx

Let's Stay Connected

Get Our Updates

Subscribe

Get in Touch

Contact